
  

Mathematical Induction
Part Two



  

Outline for Today
● Variations on Induction

● Starting later, taking different step sizes, etc.
● “Build Up” versus “Build Down”

● An inductive nuance that follows from our 
general proofwriting principles.

● Complete Induction
● When one assumption isn’t enough!



  

Recap from Last Time



  

Let P be some predicate. The principle of mathematical 
induction states that if

P(0) is true

and

∀k ∈ ℕ. (P(k) → P(k+1))

then

∀n ∈ ℕ. P(n)

If it starts 
true…

…and it stays 
true…

…then it's 
always true.



  

Theorem: The sum of the first n powers of two is 2n – 1.
 

Proof: Let P(n) be the statement “the sum of the first n
powers of two is 2n – 1.” We will prove, by induction, that
P(n) is true for all n ∈ ℕ, from which the theorem follows.

 

For our base case, we need to show P(0) is true, meaning
that the sum of the first zero powers of two is 20 – 1. Since
the sum of the first zero powers of two is zero and 20 – 1
is zero as well, we see that P(0) is true.

 

For the inductive step, assume that for some arbitrary
k ∈ ℕ that P(k) holds, meaning that

 

20 + 21 + … + 2k-1 = 2k – 1. (1)
 

We need to show that P(k + 1) holds, meaning that the sum
of the first k + 1 powers of two is 2k+1 – 1. To see this,
notice that

 

20 + 21 + … + 2k-1 + 2k = (20 + 21 + … + 2k-1) + 2k

= 2k – 1 + 2k (via (1))
= 2(2k) – 1
= 2k+1 – 1.

 

Therefore, P(k + 1) is true, completing the induction. ■
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New Stuff!



  

Variations on Induction: Starting Later



  

Induction Starting at 0
● To prove that P(n) is true for all natural 

numbers greater than or equal to 0: 
● Show that P(0) is true. 
● Show that for any k ≥ 0, that 

if P(k) is true, then P(k+1) is true.
● Conclude P(n) holds for all natural numbers 

greater than or equal to 0. 



  

Induction Starting at m
● To prove that P(n) is true for all natural 

numbers greater than or equal to m: 
● Show that P(m) is true. 
● Show that for any k ≥ m, that 

if P(k) is true, then P(k+1) is true.
● Conclude P(n) holds for all natural numbers 

greater than or equal to m. 



  

Variations on Induction: Bigger Steps



  

Subdividing a Square
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Subdividing a Square



  

Subdividing a Square



  

Subdividing a Square

These regions 
aren’t squares.



  

Subdividing a Square

Squares can’t 
overlap or hang 
off the figure.



  

For what values of n can a square be 
subdivided into n squares?

Try out some numbers n from
1 to 13. Which values of n work?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev
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An Insight
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Theorem: For any n ≥ 6, there is a way to subdivide a square into
n smaller squares.

Proof: Let P(n) be the statement “there is a way to subdivide a
square into n smaller squares.” We will prove by induction that
P(n) holds for all n ≥ 6, from which the theorem follows.
As our base cases, we prove P(6), P(7), and P(8), that a square
can be subdivided into 6, 7, and 8 squares. This is shown here:

 
For the inductive step, assume that for some arbitrary k ≥ 6
that P(k) is true and that there is a way to subdivide a square
into k squares. We prove P(k+3), that there is a way to
subdivide a square into k+3 squares. To see this, start by
obtaining (via the inductive hypothesis) a subdivision of a
square into k squares. Then, choose any of the squares and split
it into four equal squares. This removes one of the k squares
and adds four more, so there will be a net total of k+3 squares.
Thus P(k+3) holds, completing the induction. ■
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Generalizing Induction
● When doing a proof by induction,

● feel free to use multiple base cases, and
● feel free to take steps of sizes other than one.

● If you do, make sure that…
● … you actually need all your base cases. Avoid redundant 

base cases that are already covered by a mix of other base 
cases and your inductive step.

● … you cover all the numbers you need to cover. Trace out 
your reasoning and make sure all the numbers you need 
to cover really are covered.

● As with a proof by cases, you don’t need to 
separately prove you’ve covered all the options. We 
trust you. 😃



  

More on Square Subdivisions
● There are a ton of interesting questions 

that come up when trying to subdivide a 
rectangle or square into smaller squares.

● In fact, one of the major players in early 
graph theory (William Tutte) got his start 
playing around with these problems.

● Good starting resource: this Numberphile 
video on Squaring the Square.

https://www.youtube.com/watch?v=NoRjwZomUK0&feature=youtu.be


  

The Colored Cubes Problem



  

Here are 20 cubes of 4 different colors.
Split them into 4 groups of 5 cubes each so that

each group has cubes of at most two different colors.
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each group has cubes of at most two different colors.
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Here are 25 cubes of 5 different colors.
Split them into 5 groups of 5 cubes each so that

each group has cubes of at most two different colors.



  

A good split of a group of 5n cubes of n 
colors is a way of splitting them into groups 
of five each where each group has cubes of 

at most two colors.

Theorem: For any group of 5n cubes of n 
colors, there is a good split of those cubes.



  

Theorem: For any group of 5n cubes of n different colors,
there exists a good split of those cubes into groups.

P(n) is the statement “for any group of 5n cubes of n colors,
there exists a good split of those cubes.”

P(0)



  

Theorem: For any group of 5n cubes of n different colors,
there exists a good split of those cubes into groups.

P(n) is the statement “for any group of 5n cubes of n colors,
there exists a good split of those cubes.”

∀k ∈ ℕ. (P(k) → P(k+1))

Which of the following best describes the high-level
structure of the inductive step of this proof?

A. Begin with a group of 5k cubes of k colors.
Find a way to add in five new cubes and one color.

B. Begin with a group of 5k+5 cubes of k+1 colors.
Find a way to remove five cubes and one color.

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  

Theorem: For any group of 5n cubes of n different colors,
there exists a good split of those cubes into groups.

P(n) is the statement “for any group of 5n cubes of n colors,
there exists a good split of those cubes.”

∀k ∈ ℕ. (P(k) → P(k+1))

  if

for every group of 5k cubes of k colors,
    there’s a good split of those cubes.

  then

for every group of 5k+5 cubes of k+1 colors,
    there’s a good split of those cubes.P(k+1)

P(k)



  

Theorem: For any group of 5n cubes of n different colors,
there exists a good split of those cubes into groups.

P(n) is the statement “for any group of 5n cubes of n colors,
there exists a good split of those cubes.”

∀k ∈ ℕ. (P(k) → P(k+1))

  if

for every group of 5k cubes of k colors,
    there’s a good split of those cubes.

  then

for every group of 5k+5 cubes of k+1 colors,
    there’s a good split of those cubes.

Assume
a universal

Prove a
universal



  

Idea: Begin with 5k+5 cubes and k+1 colors.
Find a way to remove five cubes and one color.
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Idea: Begin with 5k+5 cubes and k+1 colors.
Find a way to remove five cubes and one color.
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Find a color that appears
five or fewer times.

If it’s exactly five times,
use all cubes of that

color in a single group.

Otherwise, use all
cubes of that color and

“top off” with cubes
of another color.



  

Theorem: Every group of 5n cubes of n colors has a good split.
Proof: Let P(n) be the statement “for any group of 5n cubes of n colors,

there exists a good split of those cubes.” We will prove that P(n) holds
for all n ∈ ℕ, from which the theorem follows.
As our base case, we prove P(0), that any group of 0 cubes of 0 colors 
has a good split. Pick any group of 0 cubes. Placing those cubes into 0 
groups satisfies the requirement of a good split, so P(0) holds.
For our inductive step, pick some k ∈ ℕ and assume P(k) holds: any 
group of 5k cubes of k colors has a good split. We will prove P(k+1): 
that any group of 5k+5 cubes of k+1 colors has a good split.
Pick any group of 5k+5 cubes of k+1 colors. By the GPHP, there is a 
color (call it blue) appearing on b ≤ 5 cubes. We consider two cases:

Case 1: b = 5. Place all five blue cubes into their own group.
Case 2: b < 5. By the GPHP, there is some other color (call it red)

appearing on r ≥ 5 cubes. Place all b blue cubes and 5 – b red
cubes into one group.

In each case, we form a group of 5 cubes of at most two different 
colors and are left with 5k cubes of k colors. By our IH, the remaining 
cubes can be grouped into a good split. That, plus our original group, 
is a good split of the 5k+5 cubes. Thus P(k+1) holds, completing the 
induction. ■
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We need to find a color that appears
five or fewer times. What mathematical

tool guarantees such a color exists?

Answer at https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev
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A nice abbreviation of
“generalized pigeonhole

principle.”
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We need to argue there’s
some other color that we can
use to “top off” the group
of the blue cubes. How

do we do that?
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A Neat Application
● This result on colored cubes forms the basis 

for the alias method, a fast algorithm for 
simulated rolls of a loaded die in software.

● This in turn has applications throughout 
computer science.

● Want to learn more? Check out 
this blog post, which shows how to apply 
this result.

https://keithschwarz.com/darts-dice-coins/


  

An Observation



  

Start with
more cubes

Get to
fewer cubes

Start with
fewer squares

Get to more 
squares



  

Following the Rules
● When working with square subdivisions, our 

predicate looked like this:
P(n) is “there exists a way to subdivide

a square into n squares.”
● When working with colored cubes, our predicate 

looked like this:
P(n) is “for any group of 5n cubes of n colors,

there is a good split of those cubes.”
● With squares, the quantifier is ∃. With cubes, the 

first quantifier is ∀.
● This fundamentally changes the “feel” of induction.



  

Build Up with ∃
● In the case of squares, in our inductive step, we prove

If
    there exists a subdivision into k squares,
then
    there exists a subdivision into k+3 squares.

● Assuming the antecedent gives us a concrete subdivision 
into k squares.

● Proving the consequent means finding some way to 
subdivide in to k+3 squares.

● The inductive step goal is to “build up:” start with a smaller 
number of squares, and somehow work out what to do to get 
a larger number of squares.



  

Build Down with ∀
● In the colored cubes case, in our inductive step, we prove

If
    for all groups of 5k cubes of k colors, there’s a good split
then
    for all groups of 5k+5 cubes of k+1 colors, there’s a good split

● Assuming the antecedent means once we find 5k cubes
and k colors, we can group them into a good split.

● Proving the consequent means picking an arbitrary group
of 5k+5 cubes of k+1 colors and looking for a good split.

● The inductive step goal is to “build down:” start with a
larger set of cubes, then find a way to turn it into a smaller
set of cubes.



  

Some Notes
● Not all predicates P(n) will have the form outlined 

here.
● That’s okay! Just use the normal rules for assuming and 

proving things.
● Think of these as quick shorthands rather than 

fundamentally new strategies. 😃
● In all cases, assume P(k) and prove P(k+1).

● All that changes is what you do to assume P(k) and what you 
do to prove P(k+1).

● When in doubt, consult the assume/prove table.
● It really does work for all cases!



  

Time-Out for Announcements!



  

Midterm 1
● You’re done with the midterm! Congrats!
● We will be grading the exam over the weekend and 

will release solutions and statistics as soon as they’re 
ready.

● In the meantime, we’re happy to discuss the 
problems in office hours or over EdStem, though we 
can’t comment on specifics of how we will be grading.



  

Problem Set Four
● PS4 is due at the normal Friday 3:00PM 

time this week.
● You can use a late day to extend the deadline to 

Saturday at 3:00PM if you’d like.
● You know the drill: ask questions on 

EdStem or office hours if you have them. 
That’s what we’re here for!



  

Back to CS103!



  

Complete Induction



  

Guess what‽



  

It’s time for

Mathematicalesthenics!
MathematiCalesthenics!



  

It’s time for

Mathematicalesthenics!
 



  

If you are the leftmost person
in your row, stand up right now.

Everyone else: stand up as soon as the 
person to your left in your row stands up.

This is kinda
like P(0).

This is kinda like 
P(k)  → P(k+1).



  

Everyone, please be seated.



  

If you are the leftmost person
in your row, stand up right now.

Everyone else: stand up as soon as 
everyone left of you in your row stands up.

This is kinda
like P(0).

What sort of 
sorcery is this?



  

Let P be some predicate. The principle of complete 
induction states that if

P(0) is true

and

for all k ∈ ℕ, if P(0), …, and P(k) are true,
then P(k+1) is true

then

∀n ∈ ℕ. P(n)

If it starts 
true…

…and it stays 
true…

…then it's 
always true.



  

Mathematical Induction
● You can write proofs using the principle 

of mathematical induction as follows: 
● Define some predicate P(n) to prove by 

induction on n.
● Choose and prove a base case (probably, but 

not always, P(0)).
● Pick an arbitrary k ∈ ℕ and assume that

P(k) is true. 
● Prove P(k+1).
● Conclude that P(n) holds for all n ∈ ℕ.



  

Complete Induction
● You can write proofs using the principle 

of complete induction as follows:
● Define some predicate P(n) to prove by 

induction on n.
● Choose and prove a base case (probably, but 

not always, P(0)).
● Pick an arbitrary k ∈ ℕ and assume that 

P(0), P(1), P(2), …, and P(k) are all true.
● Prove P(k+1).
● Conclude that P(n) holds for all n ∈ ℕ.



  

An Example: Eating a Chocolate Bar



  



  



  



  

Eating a Chocolate Bar
● You have a 1 × n chocolate bar subdivided 

into 1 × 1 squares.
● You eat the chocolate bar from left to right 

by breaking off one or more squares and 
eating them in one (possibly enormous) bite.

● How many ways can you eat a…
● 1 × 1 chocolate bar?
● 1 × 2 chocolate bar?
● 1 × 3 chocolate bar?
● 1 × 4 chocolate bar? Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev


  There are eight ways to eat a 1 × 4 chocolate bar.



  There are eight ways to eat a 1 × 4 chocolate bar.

If you eat one piece 
first, you then eat the 

remaining 1 × 3 
chocolate bar any way 

you’d like.



  There are eight ways to eat a 1 × 4 chocolate bar.

If you eat two pieces 
first, you then eat the 

remaining 1 × 2 
chocolate bar any way 

you’d like.



  There are eight ways to eat a 1 × 4 chocolate bar.

If you eat three pieces 
first, you then eat the 

remaining 1 × 1 
chocolate bar any way 

you’d like.
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Eating a Chocolate Bar
● There’s…

● 1 way to eat a 1 × 1 chocolate bar,
● 2 ways to eat a 1 × 2 chocolate bar,
● 4 ways to eat a 1 × 3 chocolate bar, and
● 8 ways to eat a 1 × 4 chocolate bar.

● Our guess: There are 2n – 1 ways to eat a 1 × n 
chocolate bar for any natural number n ≥ 1.

● And we think it has something to do with this insight: 
we eat the bar either by
● eating the whole thing in one bite, or
● eating some piece of size k, then eating the remaining n – k 

pieces however we’d like.
● Let’s formalize this!



  

Theorem: For any natural number n ≥ 1, the number of ways to eat a 1 × n
chocolate bar from left to right is 2n – 1.

Proof: Let P(n) be “the number of ways to eat a 1 × n chocolate bar from left
to right is 2n – 1.” We will prove by induction that P(n) holds for all natural
numbers n ≥ 1, from which the theorem follows.

As our base case, we prove P(1), that the number of ways to eat a 1 × 1 
chocolate bar from left to right is 21 – 1 = 1. The only option here is to eat
the entire chocolate bar at once, so there’s just one way to eat it, as 
needed.
For our inductive step, assume for some arbitrary natural number k ≥ 1 
that P(1), …, and P(k) are true. We need to show P(k+1) is true, that the 
number of ways to eat a 1 × (k+1) chocolate bar is 2k.
There are two options for how to eat the bar. First, we can eat the whole
chocolate bar in one bite. Second, we could eat a piece of size r for some
1 ≤ r ≤ k, leaving a chocolate bar of size k+1–r, then eat that chocolate
bar from left to right. Since 1 ≤ r ≤ k, we know that 1 ≤ k+1–r ≤ k, so by
our inductive hypothesis there are 2k – r ways to eat the remainder.
Summing up this first option, plus all choices of r for the second option,
we see that the number of ways to eat the chocolate bar is

1 + 20 + 21 + … + 2k – 1    =    1 + 2k – 1    =    2k.
Thus P(k+1) holds, completing the induction. ■
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More on Chocolate Bars
● Imagine you have an m × n chocolate bar. 

Whenever you eat a square, you have to eat all 
squares above it and to the left.

● How many ways are there to eat the chocolate bar? 
 
 
 

● Open Problem: Find a non-recursive exact formula 
for this number, or give an approximation whose 
error drops to zero as m and n tend toward infinity.



  

Induction vs. Complete Induction

I can solve
smaller versions
of the problem

I can solve
bigger versions
of the problem



  

Induction vs. Complete Induction
Regular
Induction

Complete 
Induction



  

Induction vs. Complete Induction

Exactly k
squares

Exactly k+3
squares

Regular
Induction

Bars with
fewer than
k squares

A bar with
exactly k+1

squares

Complete 
Induction



  

Induction vs. Complete Induction

Exactly k
squares

Exactly k+3
squares

Regular
Induction

Bars with
fewer than
k squares

A bar with
exactly k+1

squares

Complete 
Induction

Regular induction is 
great when you know 

exactly how much smaller 
your “smaller” problem 

instance is.



  

Induction vs. Complete Induction

Exactly k
squares

Exactly k+3
squares

Regular
Induction

Bars with
fewer than
k squares

A bar with
exactly k+1

squares

Complete 
Induction

Complete induction is 
great when you know 
things get smaller, but 
you’re not sure by how 

much.



  

An Important Milestone



  

Recap: Discrete Mathematics
● The past five weeks have focused exclusively 

on discrete mathematics:
Induction    Functions
Graphs      The Pigeonhole Principle
Formal Proofs   Mathematical Logic
Set Theory   

● These are building blocks we will use 
throughout the rest of the quarter.

● These are building blocks you will use 
throughout the rest of your CS career.



  

Next Up: Computability Theory
● It's time to switch gears and address the limits 

of what can be computed.
● We'll explore these questions:

● How do we model computation itself?
● What exactly is a computing device?
● What problems can be solved by computers?
● What problems can't be solved by computers?

● Get ready to explore the boundaries of 
what computers could ever be made to do.



  

Next Time
● Formal Language Theory

● How are we going to formally model 
computation?

● Finite Automata
● A simple but powerful computing device 

made entirely of math!
● DFAs

● A fundamental building block in computing.
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